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ABSTRACT 

 
In this paper a tool for automatic segmentation and 
labeling of spontaneous speech is presented. It is 
developed and specially tuned for the European 
Portuguese (EP) language but simple changes are 
needed to convert it to other languages. The main 
purpose of this system is to quickly produce a high 
quality output of phonetic labels and related time 
boundaries using as input the speech signal only. Our 
motivation was the development of a tool that could 
help to create new voices for TTS systems without and 
special previous text selection concerns. A quick talk or  
a quick reading of a randomly selected text are the 
targets for the use of our system. The evaluation of the 
presented system gave up to 88.3% of accuracy in 
phonetic alignment considering a 20ms temporal error. 

1. INTRODUCTION 
 

The quick development of speech systems created 
a demand for new and better speech databases (using 
new voices, new dialects, new special features to 
consider, etc.), often with phonetic level annotation 
information (and others). This trend re-enforces the 
importance of automatic segmentation and annotation 
tools because of the drastic time and cost reduction in 
the development of speech corpora even when some 
little human action is needed. For the Portuguese 
language, in spite of its world wide usage, the number 
of available resources is still low and unadjusted, 
justifying this way an effort on the improvement and 
development of databases and tools. An accurate 
method of automatic phonetic transcription can thus 
facilitate the development of TTS and ASR systems for 
novel material, both within and across languages, as 
well as increase robustness with respect to acoustic 
interference and variation in speaking style and 
pronunciation. 

In section 2 an overview of the system is given 
including a brief description of the used corpus. 

In section 3 the final results and some conclusions 
are presented (as a whole due to available space and 
esthetical considerations). 
 

2. SYSTEM DEVELOPMENT 
 

The system’s global structure is shown in figure 1. 
The annotation tool uses as input a speech signal that 
will be decoded, on a first stage, by an HMM based 
recognition engine (other authors try to test several 
phonetic transcriptions obtained from orthography). The 
resulting phoneme sequence and the given audio will 
then be processed by a segmentation engine, also HMM 
based. Both engines have independent parameters but 
share a common phoneme inventory and a set of 
language and acoustic models previously trained. The 
use of an HMM framework gives the possibility of 
obtaining in a single stage, both phonetic sequence and 
temporal boundaries however, as will be shown, the 
demands of each task are different and require 
independent adjustments to effectively produce the 
desired results. Hence the use of two stages is 
mandatory.  

The speech signal, labels and related boundaries 
are finally analysed as a whole in a refinement stage for 
producing high quality results. The duration of the 
phones, the acoustical/frequential positioning of time 
boundaries, the voiced/unvoiced behaviour, the pitch 
periods, among others aspects are considered in this 
final stage. After refinement the system outputs a list of 
phones with well defined temporal marks for begin and 
end. 
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Figure 1. System overview. 
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2.1. Used Corpora 
 

For system training, the FEUP/IPB speech corpus 
was used on a first step. This is a high quality database, 
recorded using professional equipment in a professional 
studio. It has nearly 100 minutes of speech from a single 
professional speaker and has phonetic level annotation 
[4].  

On a second step, to increase robustness, the 
ProGmatica corpus [5] has been used. ProGmatica 
consists of broadcasted television materials, such as 
interviews, talk shows and political debates, in which 
natural spontaneous speech occurs. It was developed to 
study speech acts, using the well known John Searle’s 
topology, and it is still an ongoing work. Around 20 
minutes of phonetically hand labelled speech were 
selected considering the largest variety of voices and the 
inexistence of speech/voice overlaps. 

The ProGmatica corpus has also been used for 
system evaluation. For this another 20 minutes were 
chosen using the same criteria. 

 
2.2. HMM Framework 

 
This system is based on a HMM framework with 

50 models (20 consonants, 18 vowels, 8 diphthongs, 1 
oclusion for voiced plosives, 1 occlusion for unvoiced 
plosives, 1 pause, 1 aspiration) with the same basic left 
to right topology with jumps (by quotient 9.7% better 
than the no-jumps topology) and 3 states in most cases. 
The first 38 models constitute the phonetic base for 
standard EP.  

The errors found in vowel separation in 
diphthongs were significantly greater than those 
encountered in other situations. The soft formant 
frequencies transition make it hard, to humans and 
machines, to accurately define the inner frontier. These 
errors affect the overall performance for each 
independent phoneme occurrence and decrease 
significantly the global system quality because vowels 
represent about 50% of phoneme occurrences in EP. As 
EP has a large variety and high frequency of 
diphthongs, when compared to other languages (English 
for example), a study has been made in order to find the 
performance difference that would occur if these 
phonetic units were considered independently or as a 
whole. Adding 8 extra HMM with 5 states (9.3% 
improvement relative to 3 states), representing the EP 
main diphthongs, resulted on an increase of 3.4% in 
boundaries localization comparing to the independent 
phoneme (vowels) results and no benefits were noticed 
in classification.  

For plosives, which represent nearly 20% of the 
average phonetic occurrences in EP, distinct models 
were created for voiced and unvoiced cases. This can 
give an increase of 1.1% in segmentation results and 
0.3% in classification. 

For non phonetic events two extra models are used 
to represent aspiration and pause. 

2.3. Trainning  
 
Since this approach is based on models that 

describe a speech signal in time, it is possible to 
simultaneously perform both segmentation and labeling 
at the same time. The pursue for an optimal 
configuration for the annotation system showed, by the 
analysis of the results, that the two implied tasks 
demand incompatible parameters. The variation of a 
parameter can improve performance on one hand (better 
classification) and decrease it on another hand (worst 
segmentation). Thus, two function oriented sets of 
configuration parameters were developed, one for 
segmentation and another for labeling.  

Varying the analysis window length and the 
overlap time parameters several results can be obtained. 
Table 1 resumes this analysis showing the correctness 
for recognition and error rate for segmentation for a 
system with 12MFCC. Insertions, deletions and 
substitution errors (these last only considered for 
classifying) are included. 

 
Window length (ms) Overlap 

15 20 25 
2.5 76.5 / 65.2 76.3 / 63.2 75.3 / 61.0 
5.0 75.0 / 69.7 74.7 / 67.2 73.8 / 65.7 
7.5 72.3 / 64.9 72.5 / 64.5 70.0 / 63.9 

10.0 68.4 / 62.9 69.3 / 62.7 68.6 / 61.1 
 

Table 1. Recognition/Segmentation results in percentage for 
several windows and overlap times. 

 
States Class. Acc. (%) Segment. Acc. (%) 

3 0,00% baseline 0,00% baseline 
4 7,01% -9,03% 
5 2,75% -7,77% 
6 0,00% -12,46% 
7 0,00% -12,43% 

Table 2: Results varying the model’s number of states 

Mix. Class. Acc. (%) Segment. Acc. (%) 
3 0,00% baseline 0,00% baseline 
4 15,18% 4,96% 
5 19,41% 7,67% 
6 22,92% 12,89% 
7 23,85% 11,15% 

Table 3: Results varying the state’s number of mixtures 

Feature Class. Acc. (%) Segment. Acc. (%) 
MFCC 0,00% baseline 0,00% baseline 
MFCC_E 31,39% 18,28% 
MFCC_0 28,93% 13,79% 
MFCC_ED 57,55% 39,05% 
MFCC_DA 64,98% 45,61% 
MFCC_EDA 70,88% 50,81% 

Table 4: Results varying the feature vectors (E for 
Energy, D for Delta, A for Acceleration) 
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Tables 2, 3 and 4 show the results for others 
parameters variations in relation to a very simple set of 
initial parameters that served as a baseline (25ms 
window, 10ms overlap, 12MFCCs).  

Finally, considering all the obtained results, two 
sets of parameters were defined. For segmentation, 15 
ms frames with 5 ms overlap have been used. The 
feature vector was composed by 16 MFCCs plus 
Energy, delta and acceleration coefficients, for each 
state 7 Gaussian mixtures. For classifying, 25 ms frames 
with 7.5 ms overlap, 14 MFCCs plus Energy, delta 
coefficients and 5 Gaussian components per state have 
been used.  

To reduce the complexity in decoding the phonetic 
sequence a language model was also developed. This 
first language model, also used in the previously 
described analysis, was based on simple rules that 
benefict from the characteristic consonant-vowel  (CV) 
alternance of EP. The sequences CCV and VV are also 
common. This model was then extended to a bigram in 
order to include exceptions. With this, the results had an 
accuracy of 78.67% for classification, 77.97% for a 10 
ms tolerance zone and 84.33% for a 20ms tolerance 
zone.  

In the development of these systems, when the 
final accuracy values were similar for two different 
parameter sets, the one with more insertion errors was 
preferred. This kind of error is easier to be corrected. 
So, with this in mind, the above accuracy values have 
almost no deletion errors. 

 
2.3. Training 

 
The set of HMM was first initialized using the 

FEUP/IPB corpus in order to obtain a solid phoneme 
description. After, the speaker dependent highly 
constrained HMM set need to be re-trained and adapted 
to other voices and to non ideal studio conditions. This 
way, the ProGmatica corpus was used.  

 
2.4. Refinement 
 

In the last stage, the annotation tool analyses the 
results so far and tries to improve boundaries’ positions 
and classification errors.  

The given boundaries are analyzed using cues 
given by acoustical features extracted from the speech 
signal. For the selection of the most interesting feature 
that could give the best representation of the acoustical 
information, a study has been made giving a special 
emphasis on autoregressive moving average models 
(ARMA). These models are based on the generic 
equation 1, representing the denominator an AR model 
(with bl=0) and the numerator a MA model (ak=0). 
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The number of AR and MA coefficients 
considered to effectively describe the speech signal has 
been independently analyzed. The results in table 5 have 
been obtained using 16KHz speech signals, 20ms 
windows with Hamming mask and 10ms overlapping. 

 
Phon. MA AR Avg. Error Max. Error 

16 4 0.53% 3.07% 
4 16 1.51% 12.13% 

m, n, J 

16 16 0.19% 18.60% 
16 4 2,37% 16.54% 
4 16 1,02% 9.72% 

a, p, s 

16 16 0.18% 6.85% 

Table 5. Prediction Error by Model Type 

The all-pole models, commonly used, can give a 
very good representation of most phonemes but, when 
applied to nasals and some unvoiced sounds, the 
performance decreases a lot. The use of some MA 
coefficients increases the results and comes to solve this 
problem. The benefice of adding new poles or zeros can 
only be observed when the description capacity of the 
model is not reached. After this, some slight decrease 
can be noticed.  

Using the described models, speech feature vectors 
have been composed using 4 zeros from de MA model, 
16 poles from the AR model, signal energy and the 
dynamic related values delta and acceleration. The 
signal is analyzed from 20ms before the given boundary 
to 20ms after using 10ms segments with a Hamming 
window and a 2.5ms overlap. The Euclidean distance is 
calculated for every two successive vectors and the 
likelihood is observed. The phonetic boundary 
confidence is based on a threshold level which is 
calculated locally. The standard deviation is also used to 
create a threshold band. Instead of having only a simple 
frontier line that limits two phonemes in a multi-
dimensional space, two limits are used, one for a raising 
distance and another for a decreasing distance 
(hysteresis classifier). This behavior has been 
implemented in order to reduce the number of false 
identified boundaries. 

The final phonetic sequence is yet reviewed. The 
too big and too small occurrences (very rarely) are 
deleted and the duration of each phoneme is tested 
against pre-known EP knowledge. In this case the error 
in boundaries is calculated for each phone and 
compared with its reference duration. An error of 15ms 
in a /d/, which has an average duration of 15.7ms, 
would be much worst than the same error in an /a/, 
which has an average duration of 112.3ms. Table 6 
shows the average errors and the average durations. 

The log probability associated with each phoneme 
is also used in order to remove some errors. A problem 
comes up in the deletions of phonemes. A phone has 
two boundaries and, assuming that the phonetic 
sequence is composed by contiguous segments, when a 
phone is deleted, one of the frontiers must be moved. 
This can be made by readjusting the frontier of the 
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previous phone or by repositioning the beginning of the 
next phone. The use of rigid rules for the two operations 
has been examined. The assimilation of the phone by 
the previous phone was more interesting but the 
differences between the two did not dictate a rule that 
could be generalized. 

 
Symb

. 
Avg. 

Dur. (ms) 
Avg. 

Err. (%) 
Symb

. 
Avg. 

Dur. (ms) 
Avg. 

Err. (%) 
a 112,3 0,96%  ocl 51,6 0,29%

 asp 292,0 1,01% O 94,3 2,77%
@ 51,8 1,35%  p 24,3 7,96%
 d 15,7 2,32%  r 35,8 0,45%
 E 77,2 1,66% R 79,8 3,40%
E 83,5 1,02%  s 99,7 3,30%
 i 63,0 0,65% S 83,1 0,45%

 i_ 85,3 3,96% 6 63,4 1,62%
 j 32,8 5,12%  t 31,5 0,95%
 k 35,5 5,49%  u 48,6 0,21%
 l 49,1 1,19%  u_ 77,9 2,86%
L 81,7 2,71%  v 57,4 0,70%
 m 58,9 0,15%  w 25,5 1,59%
 o 82,8 2,13% Z 82,7 0,27%

 
Table 6. Average duration for reference phonemes and 

average error in segmentation. 
 
For improving this task an algorithm has been 

created. For deleting phones, the duration of the two 
neighbor phones are analyzed. The phone to change will 
be the one that, after deletion, can give a set of durations 
closer to those in the knowledge database. The 
described operations can be seen on figure 2 in which 
are represented the two deletions’ possibilities. 
 

ocl k o~

k w o~ocl

Ref.:

Before:

After: kocl o~

ocl k o~

k wo~ocl

kocl o~  

Figure 2. Phone deletion at left and right. 
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Before:
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Figure 3. Phone insertion at left and right. 

For insertions of phones in the phonetic sequence 
(corrections of deletion errors) a similar problem 
occurs. In this way, similar rules are used. The new 
label that will be inserted is obtained by analyzing 
context and a grammar. The durations of the phones that 
will be separated by the new phone are analyzed and 
compared with the average occurrences in the database. 
The frontier which is changed is the one that can give a 
better duration similarity with the know phones’ 
durations. The duration of the new phone is based on 

the average duration of the same phones in the database 
and it is adjusted by a factor resulting from the 
comparison of the durations of the neighbor phones. 
This operation is shown in figure 3. 

 
3. RESULTS AND CONCLUSION 

 
With the described process, the obtained results 

were, for segmentation accuracy, 65.3% for a 10ms 
interval, 79.2% for a 15ms interval and 88.3% for a 
20ms interval as can be seen in figure 4.  
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Figure 4. Final results and comparison 

 
In this paper, an automatic annotation system has 

been presented. Regarding the use of natural speech 
recorded in real situations and trying to ease the quick 
creation of speech databases the system take as entry 
information only the speech signal. Some refinement 
procedures based on signal analysis can give an extra 
refinement to the boundaries localization. These results 
are close to or better than those reported by other 
authors that also worked with EP but not with 
spontaneous speech [6][7].  
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