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ABSTRACT 
Robust Speech Activity Detection (SAD) systems are 
required in smart-room environments due to the presence of 
noises and reverberation. In this work, a previous SAD 
system, based on LDA-extracted features and a decision tree 
classifier, has been modified in terms of both feature 
extraction and classification to significantly improve its 
performance. New features based on the low- and high-
frequency energy dynamics, and classifiers based on SVM 
and GMM have been investigated. In particular, a specific 
training process has been developed for the SVM case to 
cope with the problems of that classifier in our application. 
The resulting SAD systems have been trained with a subset 
of the SPEECON database. Tested in realistic conditions 
with the meeting databases from the NIST RT05 and RT06 
evaluations, they have shown large improvements in speech 
detection performance. 

 

1. INTRODUCTION 

Detecting the presence of speech is a key objective in 
speech-related technologies. In fact, Speech Activity 
Detection (SAD) usually allows an increase of recognition 
rate in automatic speech or speaker recognition, and it is also 
required in both speech/speaker recognition and speech 
coding to save computational resources (and batteries) in the 
devices where the processing of non-speech events is not 
needed. Also, as many speech enhancement techniques 
require a proper estimate of noise characteristics, the reliable 
detection of non-speech portions of signal is needed. On the 
other hand, SAD may boost the performance measures of 
other technologies belonging to audio scene analysis, like 
speaker localization or acoustic event detection. Last but not 
least in perceptive interface technologies, the determination 
of speech activity in a room environment may be used to 
infer the type of activity that takes place in the room, or at a 
specific position of the room, given the coordinates of the 
microphones whose signals show the presence of speech 
utterances.  

Our work, inserted in the CHIL (Computers in the 
Human Interaction Loop) project framework, assumes a 
meeting room environment, where audio acquisition is done 
in an unobtrusive way by a network of far-field 
microphones. In such a challenging environment, a high 

robustness of the SAD algorithm against environmental 
noises and reverberation is extremely important. On the other 
hand, the working scenarios require online implementations 
that can operate in real time and only a given maximum 
latency is accepted. Consequently, segmentation algorithms 
that use the entire recorded file must be avoided. 

In a previous work at our laboratory, we proposed a 
SAD algorithm [1] that assumed this kind of environment 
and working conditions. It was compared with other 
previously reported techniques using a subset of the 
SPEECON database [2]. The speech detection system was 
based on speech features that had already shown good 
robustness properties in automatic speech recognition: the 
Frequency-Filtered (FF) log spectral energies. The fact that 
these features are also used for speech recognition avoids the 
need to re-compute them for SAD when both tasks are being 
performed at the same time. The FF parameters were further 
processed by Linear Discriminant Analysis (LDA) to select 
only one feature per frame, and a Decision Tree (DT) 
classifier used a time sequence of these features to make the 
Speech/Non-Speech decision.  

In this paper, further work is presented along that line. 
The already existing algorithm has been tested in more real 
conditions involving interactions of several persons in 
meetings and it has been modified to significantly improve 
its performance. We trained our SAD system with the 
previous subset of SPEECON and, without any additional 
tuning, we have used it to carry out tests with the meeting 
databases from the NIST Rich Transcription 2005 (RT05) 
evaluation. Both the usual NIST metrics and the ones used in 
CHIL for SAD have been used to compare performances. In 
order to improve the SAD results, we have considered two 
additional features which are measures of energy dynamics 
at low and high frequencies, respectively. Besides that, two 
alternative classifiers have been tested, which are based on 
Support Vector Machines (SVM) [7] and Gaussian Mixture 
Models (GMM) [9], respectively. The usual training 
algorithm of the SVM-based classifier has been improved in 
order to cope with two problems of that classifier in our 
application: the very large amount of training data and the 
particular characteristics of the NIST metric. Also, a variant 
of the GMM-based SAD system was used in the NIST RT06 
evaluation campaign, and its results are reported in this 
paper. 

The databases for training and testing are presented in 
Section 2. Section 3 describes the features and Section 4 is 
dedicated to the classifier training procedures. Experiments 
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and results are presented in Section 5, along with the 
improvements in the training of the SVM-based classifier. 

2. DATABASES 

For the classifier training, we used a portion of the 
office environment recordings from the Spanish language 
SPEECON database [2]. In total, 90 minutes of signal 
recorded by a far-field omni-directional microphone placed 
2-3 meters in front of the speaker was used. The training 
material was well balanced in terms of the two classes of 
interest; it contained 49% of Speech and 51% of Non-
Speech. The database sampling frequency was 16 kHz and 
the sample representation is 16 bits. Across all recordings, 
the audio signal uses about 50% of the available 16-bit 
dynamic range. 

For the classifier test/development, we used the single 
distant microphone evaluation data from the NIST Rich 
Transcription 2005 (RT05) “conference room” meeting task 
[3]. It contains 10 extracts from 10 English language 
meetings recorded at 5 different sites. Each extract is about 
12 minutes long. The proportion of Speech / Non-Speech is 
highly unbalanced, approximately 90% of all signal is 
Speech. The sampling frequency and sampling 
representation are the same as in the training data, 16 kHz 
and 16 bits, respectively. Some extracts, however, use only a 
small portion of the available dynamic range (less than 
20%). 

The Rich Transcription 2006 (RT06) test data set 
consists of two kinds of data, “confmtg” and “lectmtg”. The 
confmtg data set is similar to the previously described RT05 
data. The lectmtg data were collected from lectures and 
interactive seminars across the smart-rooms of different 
CHIL project partners. 

The training and development/testing data are similar 
in a way that they are recorded in a closed environment using 
a far-field microphone, thus the recordings have a relatively 
low SNR due to the reverberation and the environmental 
noise. However, there are some differences that should be 
mentioned: different language (Spanish vs. English), 
different setup of the acquisition hardware, different Speech 
and Non-Speech proportion. Also, it is worth to mention that 
the main task, and thus the main attention, of the speaker in 
the training database was the recording itself, while in the 
test meeting/lecture database, the recording was secondary. 
As a consequence, the test/lecture database is more 
spontaneous, speakers speak not necessarily heading the 
microphone, and the data contain overlapped speech. 

3. FEATURES 

We investigate two kinds of features. The first feature 
set, based on Linear Discriminant Analysis (LDA) [9] of 
parameters that model spectra, extracts the information about 
the spectral shape of the acoustic signal from a short interval 
(approx. 70 ms). The second feature set focuses more on the 

dynamics of the signal along the time observing low- and 
high-frequency spectral components along a bit longer time 
interval (approx. 130 ms). 

3.1. LDA Measure 

The LDA measure, ldam, is based on Frequency Filtering 
(FF) features – a speech representation originally designed 
for ASR that showed higher robustness in noisy ASR tests 
than the usual mel-frequency cepstrum (MFCC) features (see 
e.g. [4]). The robustness issue is very important due to the 
low SNR of the recordings in our task. 

The FF feature extraction scheme used in this work 
consists in calculating a log filter-bank energy vector of 16 
bands for each signal frame (with frame length/shift = 
30/10ms) and then applying a FIR filter with impulse 
response h(k)={1, 0, -1} on this vector along the frequency 
axis. The obtained static FF feature vector is accompanied 
with a short-time dynamic representation in form of delta 
(50ms) and delta-delta (70ms) features. In addition, the delta 
of the frame energy is also appended. The size of the FF 
representation (16+16+16+1=49) is reduced to a single 
scalar measure by applying LDA, a data-driven linear 
transformation designed to extract the principal components 
of the input data using a discriminative criterion. That single 
LDA measure, ldam, is computed by multiplying the FF 
feature vector and the LDA eigenvector corresponding to the 
largest LDA eigenvalue as calculated from the training set. 
More details on the LDA FF features can be found in [1], 
where it is also shown that the FF+LDA measure is more 
discriminative than the MFCC+LDA measure.  

3.2. Low-Frequency and High-Frequency Energy 
Dynamics Feature 

In addition to the LDA measures, we experimented 
with two sub-band energy based features, low-frequency and 
high-frequency energy dynamics feature (lfed and hfed, 
respectively). lfed is calculated as follows: 
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where S(k,t) is the k-th bin of the FFT-512 power spectrum at 
the frame index t. lfed involves approximately a frequency 
range from 400 Hz to 1200 Hz comprising most of the 
interval of high energy concentration of the voiced speech 
sounds (sampling frequency of 16 kHz is assumed). hfed is 
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calculated in the same way but 208144 ≤≤ k , which 
correspond to the interval from 4500 Hz to 6500 Hz and this 
feature focuses on fricative sounds. The frequency intervals 
of both features are based on general knowledge and were 
not tuned to the application. A similar feature as lfed and 
hfed was proposed in [5] but that feature was calculated over 
the entire frequency range and it included spectral 
autocorrelation to emphasize the speech harmonic structure. 

Notice that in the final signal representation, the 
contextual information is involved in several ways. First, 
before applying the LDA transform, the current delta and 
delta-delta feature involve an interval of 50 and 70 ms, 
respectively, in their calculation. Next, for the representation 
of the current frame, eight LDA measures are selected from a 
time window spanning the interval of 310 ms around the 
current frame. Finally, lfed and hfed involve a smoothed 
derivative calculation that in total uses an interval of 130 ms.  

We use the SAD system on-line in our smart-room, so 
we avoid using techniques that would cause an algorithmic 
delay larger than a given acceptable value (set to 160 ms in 
our case). In addition, the designed SAD feature extraction 
saves computational resources since most of the calculation 
dedicated to the feature extraction is performed anyway for 
the ASR system due to the fact that SAD features are based 
on ASR features. 

4. CLASSIFIER TRAINING 

In this section, we explain the training procedures used 
for the three classifiers used in this work. We use the 
Decision Tree (DT) as our baseline classifier and we contrast 
its performance with another discriminative classifier based 
on Support Vector Machine (SVM) [7] approach and a 
generative classifier based on Gaussian Mixture Model 
(GMM) [9]. 

4.1. Features 

For each frame at a time index t, one LDA measure 
ldam(t) is available. To include information from a time span 
larger than just 70ms into the representation, the eight most 
important LDA measures are selected from the interval 

1515 +≤≤− ttt . As a criterion for this selection, we used 
the entropy based information gain criterion used in the DT 
training algorithm (see [1] for more details on this selection 
process). LDA measures were concatenated to form the final 
representation vector.  
 

ldam(t-15) ldam(t-10) ldam(t-6) ldam(t-3) ldam(t) 
ldam(t+3) ldam(t+6) ldam(t+10) 

 
Using these features, we defined the following four 

different feature sets (in parenthesis is the feature vector 
size): 

 

A:  Eight ldam features selected using the C4.5 DT 
training (8 features) 

B:  A + lfed (9 features) 
C:  A + hfed (9 features) 
D:  B + hfed (10 features) 

 
The A feature set is considered a baseline in our tests 

(a six-feature version of this set was already used in [1]). The 
feature sets B, C, and D allow us to observe the contribution 
of the low and high frequency dynamics features when 
added individually to the feature set A, as well as when both 
of them are added to A. 

The 90 minute SPEECON training data, processed on 
frame-by-frame basis using a frame shift of 10 ms, results in 
over 500 thousand training examples with their 
corresponding Speech / Non-Speech labels. The Speech / 
Non-Speech labeling was performed by applying a forced 
Viterbi alignment on the training files using our speech 
recognition system. 

4.2. Decision Tree (DT) Classifier 

For DT training we used the C4.5 algorithm [6] which 
is an improvement of Quinlan’s original ID3 DT training 
algorithm. During training, for each node of the decision 
tree, the best feature element from the feature vector is 
selected and the best threshold is set for this element. Using 
the SPEECON training example set and setting the pruning 
confidence level to 25% resulted in decision trees with the 
following number of nodes, depending on the feature set: A 
1031, B 1475, C 1571, and D 2117. 

4.3.  Support Vector Machine (SVM) Classifier 

A set of 500 thousand of examples is an enormous 
number of feature vectors to be used for the usual SVM 
training approach and hardly makes such training process 
feasible in practice. Alternative methods should be used; we 
tested the so-called cascade learning [8], however our 
implementation did not achieve a satisfactory performance. 
A better result was obtained by imposing a hard data 
reduction by randomly selecting 20 thousand examples 
where the two classes of interest are equally represented. The 
training data were firstly normalized anisotropicly to be in 
the range from –1 to 1, and the obtained normalizing 
template was then applied also to the testing data set. We 
used the Gaussian kernel with gamma parameter equal 5.0 
and the C parameter (controlling the training error) equal 
10.0. To train the system we use the publicly available 
SVMlight software package [10]. That preliminar SVM 
system was posteriorly modified as explained in the 
subsection 5.3. 
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4.4. Gaussian Mixture Model (GMM) Classifier 

We used the well known Expectation-Maximization 
(EM) [11] algorithm for Gaussian mixture model training 
with the K-means algorithm for the model parameter 
initialization. The number of mixtures was set to 32 for both 
Speech and Non-Speech classes and diagonal covariance 
matrices were used. 20 iterations of the EM algorithm were 
performed. 

5. EXPERIMENTS 

5.1. Metrics 

We present results using several metrics; as a primary 
metric we use the one defined for the SAD task in the NIST 
Rich Transcription evaluation. It is defined as the ratio of the 
duration of incorrect decisions to the duration of all speech 
segments in reference. We denote this metric as NIST in our 
results.  

Notice that the NIST metric depends strongly on the 
prior distribution of Speech and Non-Speech in the test 
database. For example, a system that achieves a 5% error rate 
at Speech portions and a 5% error rate at Non-Speech 
portions, would result in very different NIST error rates for 
test databases with different proportion of Speech and Non-
Speech segments; in the case of 90-to-10% ratio of Speech-
to-Non-Speech the NIST error rate is 5.6%, while in the case 
of 50-to-50% ratio it is 10%. Due to this fact we report three 
metrics from CHIL: Mismatch Rate (MR), Speech Detection 
Error Rate (SDER), and Non-Speech Detection Error Rate 
(NDER) defined as: 

• MR = Duration of Incorrect Decisions / Duration of 
All Utterances 

• SDER = Duration of Incorrect Decisions at Speech 
Segments / Duration of Speech Segments 

• NDER = Duration of Incorrect Decisions at Non-
Speech Segments / Duration of Non-Speech 
Segments 

5.2. Results on RT05 testing data 

For the RT05 test database, a post-processing was 
applied to each SAD output consisting of marking the non-
speech intervals shorter than 0.3 seconds as speech. This 
non-speech gap smoothing was used to mimic the same post-
processing that was applied to the original human labels 
used as the reference. 

Notice also that the test database contains much more 
Speech intervals than Non-Speech intervals (approx. 90% 
Speech). The NIST metric is inversely proportional to the 
amount of Speech in the reference labels. Thus, assuming 
the same amount of incorrect decisions in both a testing data 
with 50% Speech content and a testing data with 90% 

Speech content, a lower NIST error will be reported for the 
later testing data. This is the reason why some error rates 
reported for the unbalanced test database (RT05) may be 
lower that those reported for the more balanced train 
database (SPEECON). 

Table 1 shows the results we obtained on the test 
database. Neither features nor classifiers were tuned to these 
test data. Most of the observations about the lfed and hfed 
features from the previous experiments with the training data 
hold also in this case, which is quite encouraging. An 
exception is the feature set D in the GMM classifier, where 
adding hfed does not improve the performance of the feature 
set B for the same classifier. In general, significant 
improvements can be seen when adding the lfed and hfed 
features to the LDA vector; for example in the case of SVM, 
the usage of both features reduces the original error by 52%. 
Among the classifiers, GMM achieves substantially lower 
error rates than the two discriminative classifiers (note that 
GMM was the worst performing on the training data). It 
seems in our case that the GMM classifier generalizes better 
the knowledge from the training data than the two other 
classifiers. The performance of DT and SVM is very similar, 
especially in the D feature set case. The best overall 
performance, NIST error of 8.47%, was obtained using the 
GMM classifier with the feature set B. It represents a 59% 
error rate reduction with respect to the performance of the 
baseline system consisting of the DT classifier and the 
feature set A (20.69%). Notice the NDER scores are high in 
comparison to the SDER scores in these tests. This is caused 
mostly by the combined effect of the Non-Speech gap post-
processing and the low amount of the Non-Speech testing 
material which was mentioned above. 

Table 1. Error rates obtained for the RT05 test data 
 NIST 

MR / SDER / NDER 
Feat set A B C D 

DT 
20.69 

18.77 / 18.21 / 
24.32 

12.37 
11.20 / 9.24 / 

30.51 

14.76 
13.37 / 11.65 / 

30.27 

11.54 
10.43 / 8.10 / 

33.42 

SVM 
23.88 

21.71 / 21.46 / 
24.22 

14.70 
13.36 / 11.87 / 

28.19 

15.69 
14.26 / 12.51 / 

31.76 

11.45 
10.41 / 7.99 / 

34.56 

GMM 
12.25 

11.13 / 8.86 / 
33.81 

8.47 
7.69 / 4.61 / 

38.42 

10.02 
9.11 / 5.24 / 

47.70 

8.66 
7.88 / 3.75 / 

49.00 

5.3. Improvement of the SVM performance on the 
RT05 testing data  

As it has been mentioned in subsection 4.3, a hard data 
reduction method has been applied that randomly selects 20 
thousand examples from the SPEECON database where the 
two classes of interest are equally represented. The 
experiments in this subsection aim to improve the 
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performance of the SVM classifier doing two modifications 
in the training process.  

The first one aims at an efficient sample selection. 
Instead of using a random selection of a reasonable number 
of samples, a two-step approach is chosen. Firstly, the whole 
training database is decomposed into chunks of 1000 
samples. Then, on each chunk, a Proximal Support Vector 
Machine (PSVM) [12] has been trained. Unlike conventional 
SVM, PSVM solves a single square system of linear 
equations and thus it is very quick to train. In the nonlinear 
case (we use a Gaussian kernel) of PSVM the concept of 
support vector disappears as the separating hyperplane 
depends on all chunk data. In that way, all training data must 
be preserved for testing. While training, PSVMs 5-fold cross 
validation (CV) was applied to obtain optimal C and gamma 
parameters. After training, a threshold was applied on the 
CV accuracies of all chunks to select a given number of 
them that show the highest CV accuracy (we select the same 
number of data as in subsection 4.3, i.e. 20 chunks = 20 
thousand samples). In the second step, a conventional SVM 
with the setting described in subsection 4.3 is trained on the 
chosen data.  

The second modification makes use of the knowledge 
of the specific NIST metrics during the training phase. As it 
has been mentioned in subsection 5.1, NIST metrics depends 
on the prior distribution of Speech and Non-Speech in the 
test database. For this reason, if we want to improve the 
NIST scores for the RT05 evaluation, we should penalize the 
Speech class more than the Non-Speech class. That is 
possible for a discriminative classifier as SVM, by 
introducing different costs for the two classes (but not for a 
GMM-based classifier).  

Table 2 shows results obtained on the RT05 evaluation 
with the modified SVM system and feature set D, along with 
the ones obtained with the best SVM and GMM systems 
from Table 1. 

 

Table 2. Error rates obtained for the RT05 evaluation with 
the modified SVM system 

 NIST 
MR / SDER / NDER 

GMM 8.47 
7.69 / 4.61 / 38.42 

SVM 11.45 
10.41 / 7.99 / 34.56 

SVM 
modified 

8.03 
7.30 / 2.51 / 55.07 

 
From Table 2 we observe that, as it can be expected 

after the second modification, the NDER score has increased 
but the SDER score, which has the major influence on the 
NIST measure, has strongly decreased. In consequence, after 
both modifications, the NIST error for the SVM-based 
system decreases from 11.45% to 8.03%, slightly 
outperforming the best GMM system.  

5.4. Results on RT06 testing data 

In this subsection we present the results achieved in the 
RT06 evaluation campaign. For that evaluation we chose a 
GMM classifier and, as features, we used the feature set D 
augmented by a cross-frequency energy dynamic feature, 
xfed, which is obtained as a combination of lfed and hfed and 
it is calculated as follows: 

This feature reaches high values when both the hfed 
before and lfed after (or hfed after and lfed before) the 
current frame have high values. It attempts to follow the 
energy flow between low and high frequencies typical for 
speech. The 9 frame distance was set empirically (it would 
correspond to 1/0.18 = 5.6 Hz energy flow rate) and it is 
limited by the maximum allowed algorithmic delay of the 
SAD system.  

For the confmtg task, both SPEECON and RT05 
databases were used to train the SAD system. For the lectmtg 
task, also a small amount of CHIL data was added into the 
training of the final system.  

The RT06 evaluation campaign has several evaluation 
subtasks, depending on the used set of microphones. We 
participated in two subtasks, single distant microphone 
denoted as sdm and multiple distant microphone, mdm. The 
sdm subtask involved the centrally located omni-directional 
table microphone, or the best microphone selected after 
listening to the recordings. The mdm subtask involved at 
least 3 omni-directional table microphones, including the 
one selected for the sdm subtask. 

In the tests with the RT06 data we applied a slightly 
different post-processing on top of the classifier output than 
we did in the case of the RT05 data tests. First, we 
performed a majority voting, where the central frame of an 
11 frame interval was marked as Speech if 6 or more frames 
of this interval were classified as Speech; otherwise it was 
marked as Non-Speech. Second, to each Speech segment, 
0.2 s of Speech was added at the beginning and the end of 
segment. 

In the case of mdm, we applied a separate SAD to each 
individual channel, without post-processing. Outputs of all 
SAD systems were merged by a majority voting performed 
for each frame favoring the Speech label in the case of a tie. 
Then the same post-processing as in the sdm case was 
applied on the output of merging.  
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Table 3. Error rates obtained for the RT06 evaluation tasks 

Feat set D + xfed NIST 
MR / SDER / NDER 

 confmtg lectmtg 

sdm 5.45 
5.1 / 3.1 / 41.4 

7.10 
6.2 / 0.4 / 48.1 

mdm 5.63 
5.3 / 3.5 / 38.7 

5.30 
4.6 / 0.7 / 33.3 

 
Table 3 shows error rates obtained by our SAD system 

in the RT06 evaluation tasks. Very low NIST error rates 
were obtained and our SAD system ranked among the best 
systems; however, the Non-Speech detection error rates are 
high. To reduce this error rate will be the objective of our 
future work. We could benefit from the multiple 
microphones in the case of lectmtg task, however there is no 
significant change in the case of confmtg task.  

6. CONCLUSION 

The presented work is oriented towards a robust 
Speech Activity Detection (SAD) in smart-room 
environments. The baseline SAD system used features 
obtained by applying Linear Discriminative Analysis (LDA) 
on a parameter set modeling the shape of the signal 
spectrum; Decision Tree was used to perform the 
Speech/Non-Speech classification on a frame-by-frame 
basis. Both the LDA transform and the Decision Tree 
classifier were trained by a portion of the Spanish 
SPEECON database. The SAD system was evaluated on an 
interactive meeting database from the NIST RT05 evaluation 
campaign. 

In this work we improved significantly the 
performance of the baseline speech detector. We tested 
additional features that measure the signal energy dynamics 
at low and high frequencies. Also, two other classifiers were 
evaluated for the SAD task: a discriminative Support Vector 
Machine classifier and a generative Gaussian Mixture Model 
(GMM) classifier. We observed that appending the high and 
low frequency energy dynamics features to the LDA features 
improved the performance for both training and testing data 
across all the classifiers with a higher benefit from the low-
frequency feature.  

In a first stage, the highest NIST error rate reduction 
was achieved by using the GMM classifier and the LDA 
features with the low-frequency energy dynamics; the error 
of the baseline SAD was reduced from 20.69% to 8.47% in 
this case. Then, two modifications of the usual training 
algorithm of the SVM-based classifier were developed in 
order to cope with two problems of that classifier in our 
application: the very large amount of training data and the 
particular characteristics of the NIST metric. With those two 
modifications, the SVM system further reduced the error to 
8.03%. Finally, very competitive results were obtained in the 

RT06 SAD evaluation task, and they were also reported in 
this paper. 
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